

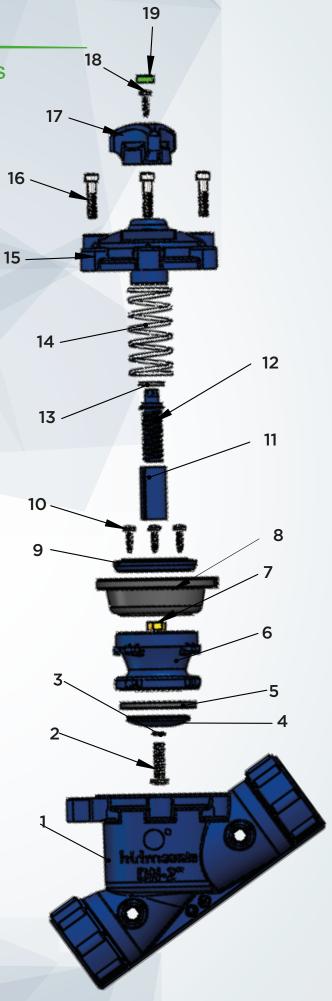
Válvula de **passagem livre**, sem obstáculos no fluxo.

Pressão máxima admissível

10 bar

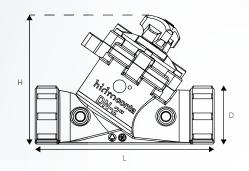
Regulador manual incorporado

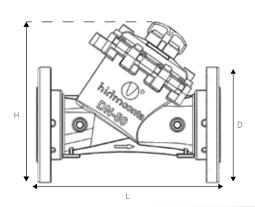
Baixa perda de carga e alto KV.



A válvula Taurus Hidroconta está projetada em forma de "Y", permite uma grande capacidade de fluxo, mantendo uma perda de pressão muito baixa.

Componentes


Nº	Descrição	Material		
1	Corpo	Poliamida reforçada		
		com fibra de vidro		
2	Parafuso M8x30	Aço inox		
3	O'ring 8x2	NBR		
4	Arruela inferior de	Poliamida reforçada		
	fecho	com fibra de vidro		
5	Junta de fecho	NBR		
6	Corpo interno	Poliamida reforçada		
		com fibra de vidro		
7	Porca M8	Latão		
8	Membrana	NR		
9	Arruela superior da	Poliamida reforçada		
	membrana	com fibra de vidro		
10	Parafuso 4,8x19	Aço inox		
11	Porca obturadora	Poliamida reforçada		
		com fibra de vidro		
12	Parafuso obturador	Poliamida reforçada		
		com fibra de vidro		
13	O'ring 16x2,5	NBR		
14	Mola	Aço inox		
15	Tampa	Poliamida reforçada		
		com fibra de vidro		
16	Parafuso allen M6x30	Aço inox		
17	Volante válvula	Poliamida reforçada		
		com fibra de vidro		
18	Parafuso 3,9x32	Aço inox		
19	Tampa do parafuso	Poliamida reforçada		
		com fibra de vidro		



Dimensões

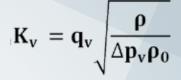
Tan	nanho	L	Н	D	Peso	Conexões	Medidas com saídas para PVC (L1)
mm	Poleg.		mm		Kg		mm
50	2"	230	162	74	1,1	ROSCA	330,40
80	3"	310	236	108	2,7	ROSCA	436,00
80	3"	320	278	200	3,8	FLANGE	
100	4"	335	291	225	4,22	FLANGE	

Especificações técnicas

Tamanho	Pressão mínima de abertura	Pressão Máxima	KV	CV
	bar	bar	m3/h	US glm e psi
50	0,3	PN16	98,9	114,3
80	0,15	PN16	203,3	235,0
100	0,15	PN16	203,3	235,0

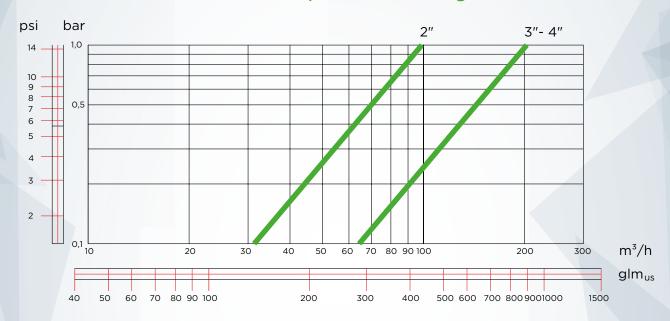
qv

 ρ_0

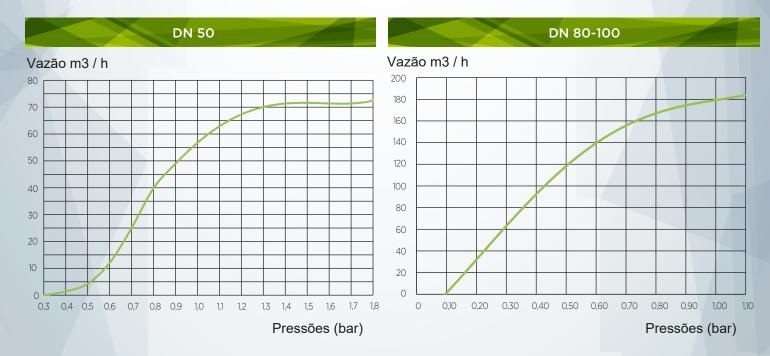

Δρν

é a vazão em m3/h

é a densidade da água em kg/m3


é a densidade da água a 15 °C em kg/m3

é a perda de carga da válvula em bar



Ábaco de perdas de carga

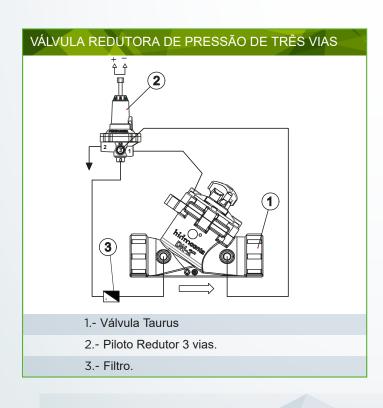
Curvas de funcionamento

VÁLVULA REDUTORA

Recomendada para lugares onde se necessita uma diminuição da pressão pelos seguintes motivos:

Ajustar a pressão ao consumo.

Proteger instalações.


Na válvula redutora, o piloto atua sobre a válvula de forma que esta tenha uma função modulante, com a finalidade de manter constante a pressão a jusante para o valor desejado.

O piloto fixa a pressão a jusante independentemente da pressão de entrada. Se a pressão na saída é menor que a préfixada, a válvula fica completamente aberta. No caso de que a pressão a montante seja menor que a desejada, o piloto deixará a válvula aberta e atuará únicamente quando a pressão a jusante supere a pressão estabelecida.

Redução máxima: pressão de entrada x 1/3 Precisão: pressão desejada ±0,3 bar

VÁLVULA SUSTENTADORA

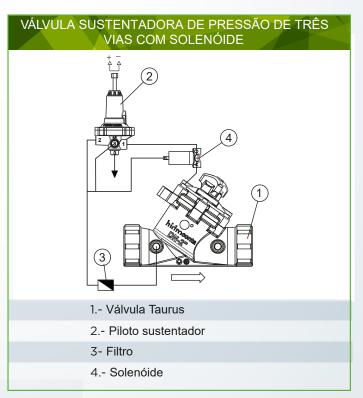
Utiliza-se em instalações onde se deseja manter uma pressão hidráulica mínima como por exemplo:

- Grupos de bombeamento.

- Ramais com consumos diferentes.

- Equip. de filtração.

A instalação deste tipo de válvula permite manter uma pressão mínima a montante da válvula estabelecida pelo usuário.



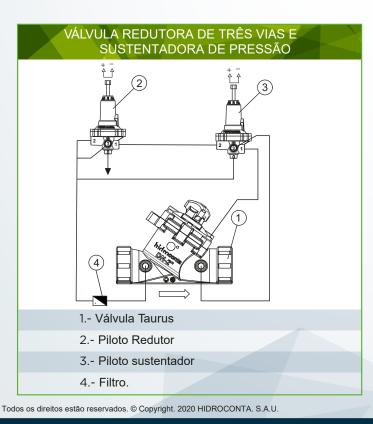
A válvula sustentadora de pressão, está projetada para manter uma pressão mínima a montante, se a pressão é superior ao valor de regulagem, a válvula se abre totalmente, caso contrário a válvula se fechará até que a pressão a montante seja igual ou superior a desejada.

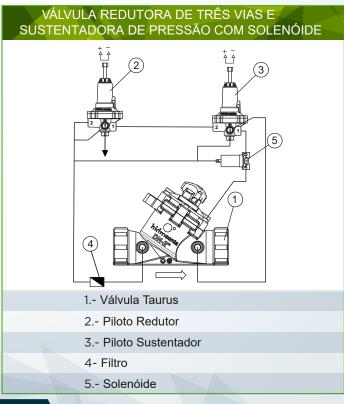
Faixa estandar: de 1 bar até 6,5 bar Precisão: pressão desejada ±0,3 bar



VÁLVULA REDUTORA E SUSTENTADORA

A válvula combinada redutora e sustentadora realiza ambas funções de maneira independente. Evita que nas instalações ocorram:


Utiliza-se principalmente para reduzir automaticamente pressões a jusante na rede de distribuição e sustentar um mínimo de pressão na linha principal de alta pressão sem importar a demanda de distribuição.



O piloto redutor atua sobre a válvula de forma que esta tenha uma função modulante, com a finalidade de manter constante a pressão a jusante para o valor de regulagem fixado, o piloto sustentador atua sobre a válvula de forma que esta tenha uma função modulante, com a finalidade de manter a pressão a montante em valor acima do mímimo desejado.

Redução máxima: pressão de entrada x 1/3 Precisão: pressão desejada ±0,3 bar Faixa de sustentação: de 1 bar até 6,5 bar.

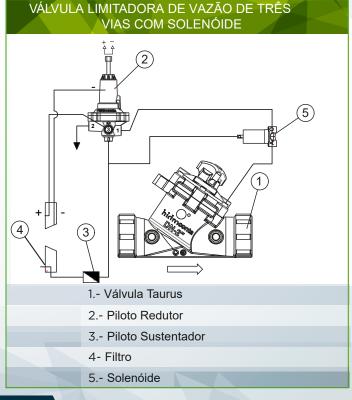
VÁLVULA LIMITADORA

Com a instalação de válvulas limitadoras se consegue:

Evitar consumos excessivos.

Evitar quedas de pressão e portanto deficiências de fornecimento em pontos afastados da rede.

As válvulas limitadoras de vazão permitem limitar a vazão de água circulante, assegurando que esta seja igual ou inferior ao ajustado.


O piloto regula a abertura da válvula em função da pressão diferencial, proporcionando a vazão pré-fixada e mantendo a vazão constante.

Acionando o parafuso de ajuste do piloto é possível variar a vazão. Mediante dois sensores, instalados em ambos lados de uma placa orifício que produz uma determinada perda de carga, se obtêm a vazão circulante, fechando a válvula hidráulica parcialmente até somente permitir a vazão determinada em caso de que se ntente superar a vazão ajustada.

Uma vez pré-selecionada a vazão a limitar, o piloto é capaz de modificar a vazão estabelecida em ±15 %.

VÁLVULA LIMITADORA E REDUTORA

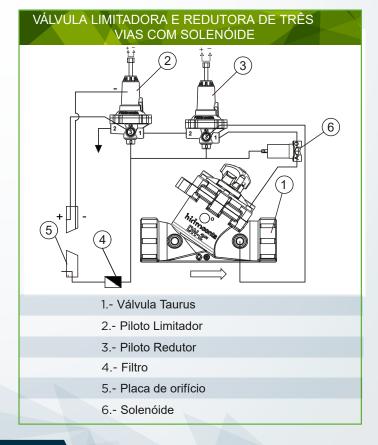
A válvula combinada redutora e limitadora realiza ambas funções de maneira independente. Evita que nas instalações ocorram:

 Consumos excessivos
 Quedas de pressão e portanto deficiências de fornecimento em pontos afastados da rede.

- Ajustar a pressão ao consumo.

- Proteger instalações.

A válvula limitadora e redutora desenvolve sua função com auxílio de uma placa de orifício ajustada instalada a montante. Inclui um piloto diferencial que regula a abertura da válvula em função da pressão diferencial, proporcional a vazão, mantendo a vazão constante. O piloto redutor atua sobre a válvula de forma que esta tenha uma função modulante com a finalidade de manter constante a pressão a jusante no valor de pressão ajustado.



Faixa de operação

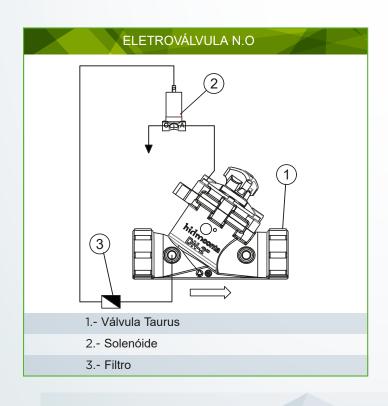
Redução máxima: pressão de entrada x 1/3 Faixa de pressão: pressão desejada ±0,3 bar

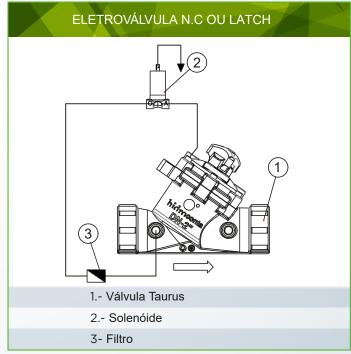
Uma vez pré-selecionado a vazão a limitar, o piloto é capaz de modificar a vazão estabelecida em ±15 %.

VÁLVULA LIMITADORA E REDUTORA DE TRÊS VIAS 1.- Válvula Taurus 2.- Piloto Limitador 3.- Piloto Redutor 4.- Filtro 5.- Placa de orifício

ELECTROVÁLVULA

A instalação de eletroválvulas nos permite atuar sobre a válvula a distância, poderemos controlar a abertura e fechamento da válvula de maneira automática.

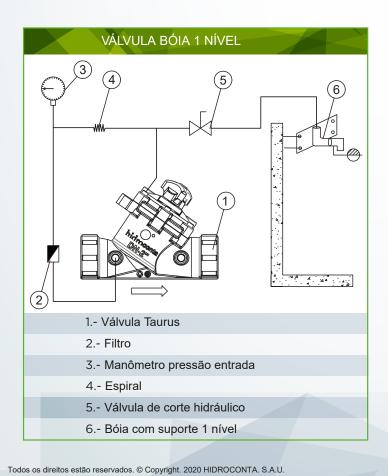


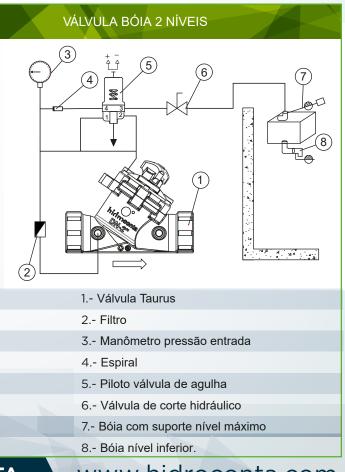

A válvula VHM com solenóide oo eletroválvula é uma válvula de funcionamento on/off.

A válvula funcionará totalmente aberta ou totalmente fechada quando se energiza o solenóide.

Utiliza a própria pressão da rede para seu funcionamento.

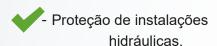
Em caso de baixa pressão na rede pode utilizar-se qualquer fonte externa de pressão.


VÁLVULA BÓIA



As válvulas com piloto e bóia utilizam-se em depósitos de água ou caixas de regulagem. Está projetada para abrir completamente quando o nível de água alcança um ponto baixo pré-selecionado e fecha hermeticamente quando alcança o nível alto selecionado.

Quando o nível de água no depósito chega a seu ponto máximo, o piloto-bóia fecha a passagem de água, acumulando-se a pressão de água na câmara da válvula e fechando-a. Quando o nível da água no depósito baixa devido ao consumo, o piloto-bóia tambem baixa, abrindo a passagem de água e drenando a câmara, na qual abre a válvula hidráulica.



www.hidroconta.com

VÁLVULA ALÍVIO

A válvula de alívio está projetada para abrir em caso de superar uma pressão máxima pré-estabelecida. Esta válvula se instala com saída para atmosfera, aliviando mediante sua abertura a sobre-pressão na rede.

O piloto de alívio de pressão, estabelece o limite de pressão máxima de ajuste através de um parafuso de regulagem.

Se a pressão a montante excede a pressão de ajuste, ocorre o deslocamento para cima do pistão colocando em comunicação a câmara da válvula e a pressão atmosférica. Desta forma a válvula se abre para reduzir o excesso de pressão.

Pressões de trabalho: De 2-16 bar

Precisão: ±0,5 bar

Informação para pedido

Características	s Gerais		
Diâmetro da válvula	DN / mm / polegadas		
Tipo de válvula	membrana / pistão		
Pressão máxima de entrada	bar / MPa		
Fittings	plástico / metálicos		
Acessórios	plástico / metálicos		
Pilotos	plástico / metálicos		
Solenóide (Sim/não)	latch/24VDC/24VAC/220VAC		
Estado da válvula em repouso	aberta / fechada		
Características válvula redu	utora / limitadora		
Pressão de saída	bar / MPa		
Vazão máxima	m3 / h		
Vazão mínima	m3 / h		
Características válvula sus	tentadora		
Pressão de sustentação	bar / MPa		
Vazão máxima	m3 / h		
Vazão mínima	m3 / h		
Vazão de trabalho	m3 / h		
Características ele	etroválvula		
Voltagem do solenóide	V		
Nº de fios	2/3		
Uso dá válvula	aberta / fechada		
Características con	ntrole de nível		
Níveis de controle	1/2		
Características alív	vio		
Pressão de alívio	bar / MPa		

FAQ

1- Por que a válvula não abre?

Pode ser que não haja suficiente pressão na entrada da válvula, deve examinar as válvulas de isolamento do sistema a montante e jusante, se estão fechadas abrir-las para permitir a passagem de água e gerar pressão.

Outro motivo pode ser que o solenóide esteja calcificado, limpe-o e revise todas as partes que sejam necessárias.

2- Por quê a válvula não regula no ponto desejado de controle?

Pode estar ocorrendo porque o piloto não esteja ajustado adequadamente, comprove apertando e afrouxando o parafuso para ver se ha reação do piloto, desta maneira, pode ajustar o piloto a velocidade de abertura e fechamento desejada.

Comprove se o filtro a montante está obstruído e provoca que não chegue suficiente pressão ao piloto para poder ativar a válvula no ponto desejado de controle.

3- Por quê a válvula não fecha?

Pode ser que o filtro este obstruído, para comprovar, desconecte a linha de conexão desde a tampa para ver se há fluxo de água na entrada. Neste caso limpe a tela de filtro.

Se a membrana da válvula principal falha, também pode dar este resultado, revise a membrana e substitua se necessário. Outro motivo pode ser que o solenóide esteja calcificado, limpe-o e revise todas as partes que sejam necessárias.

4- Por quê a membrana apresenta vazamentos?

Pode ser produzido pela acumulação de sujeira no fecho. Feche a válvula manualmente, se o problema persiste abra a válvula para limpar a região.

VÁLVULA TAURUS

WHEN WATER COUNTS

CUANDO EL AGUA ES LO QUE CUENTA

www.hidroconta.com

Distribuído no Brasil por:

MIZU
Tecnologia Hidráulica Ltda

T: +55 19 999244773 www.mizu.ind.br contato@mizu.ind.br Hidroconta se exime da responsabilidade com respeito a erros de informação exposta neste documento, a qual poderá ser modificada sem aviso prévio. Todos os direitos estão reservados. © Copyright. 2020 HIDROCONTA. S A I

